Journal of Organometallic Chemistry, 339 (1988) 125–131 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Further reactions of $[(\eta - C_5H_5)(CO)_2FeC(S)SMLn]$ (MLn = $Fe(\eta - C_5H_5)(CO)_2$, $Re(CO)_5$) with organic electrophiles

L. Busetto *, S. Bordoni and V. Zanotti

Dipartimento di Chimica Fisica ed Inorganica, Università di Bologna, viale Risorgimento 4, 40136 Bologna (Italy) (Descinal Luce 20th 1087)

(Received June 29th, 1987)

Abstract

Reaction of FpC(S)SMLn (Fp = Fe(η -C₅H₅)(CO)₂; MLn = Fp (1a), Re(CO)₅ (1b)) with MeC(O)Cl affords [FpCS]Cl and LnMSC(O)Me (3); 1a reacts with (CF₃CO)₂O to yield [Fp(CO)]CF₃CO₂ and FpSC(O)CF₃ (5). In both cases the reactions have been shown to occur via the unstable S-acylated intermediates [FpC[SC(O)R]SMLn]⁺ (R = CF₃, Me). Alkylation of 1a with RBr (R = Me, Et, CH₂Ph, CH₂CHCH₂) or CF₃SO₂OR (R = Me, Et) followed by treatment of the stable S-alkylated derivatives [FpC(SR)SFp]⁺ with I⁻ provides a useful alternative method for the synthesis of a variety of FpC(S)SR.

The reaction of the μ_2 : η (C, S) carbon disulfide complexes FpC(S)SMLn (1) with Lewis acid-metal species or alkylating reagents (E) has provided a series of tri- and di-nuclear complexes with CS₂ bridges of the type 2 [1-4].

Moreover the low basicity of the thione-sulfur function in 1 has been shown to allow its nucleophilic addition at the thiocarbonyl carbon rather than CO or CS replacement in the $[Fe(\eta-C_5H_5)(CO)_2(CS)]^+$. These reactions have given the new metallacycles $[(CO)(\eta-C_5H_5)FeC(SMLn)SC(Fp)S]$ [5]. It was therefore expected that the C=S group in 1 might, under suitable conditions, form S-acyl adducts by use of carboxylic acid anhydrides or acetyl chloride.

We describe here the results of these reactions, which unexpectedly result in desulfurization of the CS₂ bridging molecule, as shown by the formation of FpSC(O)R ($R = CF_3$, Me). It is also shown that the type 1 complexes are convenient starting materials for the synthesis of a variety of iron dithiocarboxylate complexes FpC(S)SR.

1. Acylation reactions

The reaction of FpC(S)SFp (1a) and an excess of MeC(O)Cl in Et₂O did not produce the expected [FpC[SC(O)Me]SFp]Cl, but gave two other products in approximately equimolar amounts namely [Fp(CS)]Cl [6], which precipitates during the reaction, and FpSC(O)CH₃ (3a) isolated by chromatography on alumina of the reaction solution. Similarly FpC(S)SRe(CO)₅ (1b) was shown to react with MeC(O)Cl to form [Fp(CS)]Cl and (CO)₅ReSC(O)Me (3b).

$$FpC(S)SMLn + ClC(O)Me \rightarrow [Fp(CS)]Cl + LnMSC(O)Me$$
(1)
(1a: MLn = Fp; 1b: MLn = (CO)₅Re) (3a-3b)

When reaction 1 was carried out in CH_2Cl_2 **3a** was obtained as main product. In this case infrared analysis of the reaction solution showed the presence of FpCl and $Fe(\eta-C_5H_5)(CO)(CS)Cl(\nu(CS) \ 1318 \ cm^{-1})$, which are produced from [Fp(CS)]Cl by substitution of the chloride counter ion for CO or CS [7]. Nevertheless alumina chromatography of the reaction mixture allowed separation of only two products, namely **3a** and variable amounts of FpCl. The analytical and spectroscopic data for type **3** complexes (Table 1) are as expected and, in the case of **3a**, identical with those of the same compound prepared from FpCl and KSC(O)Me in the presence of AgNO₃.

The products of eq. 1 not only indicate that acetyl chloride acts as desulfurizing reagent of the bridging CS_2 , but also provide clues to the reaction mechanism.

The desulfurization reactions of both organic molecules [8] and CS_2 -containing complexes [9] by organometallic reagents have been suggested to occur through carbenes. The initial step of the acylation reaction 1 may likewise involve formation of the carbene intermediate [FpC(SC(O)Me)SMLn]⁺. Decomposition of this thioanhydride-like complex via C-S and S-M cleavage (Ia) would yield [Fp(CS)]⁺ and 3.

The depicted mechanism is consistent both with the demonstrated Z-electrophilic addition at the thione group of 1 and the ease of S-M cleavage of type 2 cationic complexes [4,5]. Direct evidence for the proposed mechanism is given by the closely related reaction between $[Fp(CS)]^+$ and 1a containing 10% ¹³C enriched bridging CS_2 , which gives the cyclic species 4 (eq. 2).

Table 1 Properties and selected IR (cm^{-1}) and ¹H NMR data

Compound	M.p. (° C)	Yield (%) ^a	$\nu(CO)^{b}$	Chemical shift δ (ppm) ^c
FpSC(O)Me (3a)	5960	58	2040s, 1994s, 1626m	5.07(s, C_5H_5), 2.43(s, Me)
(CO) ₅ ReSC(O)Me (3b)	82-83	50	2135w, 2037w, 2041vs, 1997s, 1644m	
FpSC(O)CF ₃ (5a)	61-63	73	2051s, 2006s, 1673m	$5.15(s, C_5H_5)$
$(CO)_{5}ReSC(O)CF_{3}$ (5b)	75–76	61	2143w, 2080w, 2041vs, 1996s, 1645m	-
[FpC(SMe)SFp]I (7a)	118 (dec)	85	2042s, 1999s	5.58, 5.49(s, C ₅ H ₅), 3.38(s, Me)
[FpC(SEt)SFp]SO ₃ CF ₃ ^d (7b)	137 (dec)	92	2047sh, 2041s, 2003s	5.58, 5.51(s, C ₅ H ₅), 4.00(q, CH ₂), 1.58(t, CH ₃)
[FpC(SCH ₂ Ph)SFp]Br (7c)	-	81	2040s, 1995s	7.40(m, Ph), 5.40, 5.33(s, C ₅ H ₅), 5.08(s, CH ₂)
[FpC(SCH ₂ CH=CH ₂)SFp]Br (7d)	-	78	2041s, 1997s	5.42, 5.25(s, C_5H_5)
FpC(S)SMe ^e (6a)	70–71	72	2033s, 1981s	4.94(s, C ₅ H ₅), 2.64(s, Me)
FpC(S)SEt (6b)	55–58	70	2032s, 1983s	4.87(s, C_5H_5). 3.23(q, CH_2), 1.21(t, CH_3)
FpC(S)SCH ₂ Ph ^{<i>e</i>} (6c)	71–73	65	2032s, 1982s	7.13(m, Ph), 4.91(s, C ₅ H ₅), 4.54(s, CH ₂)
FpC(S)SCH ₂ CH=CH ₂ (6d)	4548	48	2030s, 1984s	5.86(m, CH), 5.18(m, CH ₂), 4.88(s, C ₅ H ₅), 3.96(d, SCH ₂)
FpOC(O)CF ₃ ^f	73–74	65	2054s, 2016s, 1680m	$5.17(s, C_5H_5)$

^a Calculated from FpC(S)SMLn. ^b In CH₂Cl₂. ^c Neutral compounds in CDCl₃, cationic in acetone-d₆. ^d See ref. 3. ^e See ref. 13. ^f See ref. 10.

We expected to find ¹³C enrichment only at the carbon bonded to the endocyclic iron, but surprisingly the ¹³C NMR spectrum of 4 showed that the signals previously assigned [5] to the endocyclic carbons (329.23, 284.23 ppm) were equally enriched. This observation is consistent with the existence of the equilibrium 3 involving the CS₂/CS exchange via intermediate Ib prior to form the metallacycle by reaction between the CS- and CS₂-containing species (eq. 2).

$$F_{P} - C^{*} + [F_{P}(CS)]^{*} + F_{P} - C^{*} + [F_{P}(C^{*}S)]^{*}$$

$$(3)$$

By analogy with acetyl chloride, $(CF_3CO)_2O$ reacts with 1a to form FpSC(O)CF₃ (5a), a yellow precipitate of $[Fp(CO)]CO_2CF_3$, and some unidentified organic sulfur-containing compounds (eq. 4).

$$FpC(S)SFp + (CF_3CO)_2O \rightarrow [Fp(CO)]CO_2CF_3 + FpSC(O)CF_3 + \dots$$
(4)
(1a) (5a)

The isolated iron carbonyl salt dissolves in CH_2Cl_2 to form the red FpOC(O)CF₃ [10]. The formation of **5a** suggests that the desulfurization reaction 4 proceeds as described above. If this is the case, the [Fp(CO)]CO₂CF₃ product of eq. 4 should be a side-product of the reaction between [Fp(CS)]CO₂CF₃ and the excess of (CF₃CO)₂O. It can thus be assumed that under the experimental conditions we use, trifuoroacetic anhydride behaves like NH₂R, NCO⁻ or NCS⁻, which are known to desulfurize [Fp(CS)]⁺ to form [Fp(CNR)]⁺ [11] and FpCN [12], respectively.

Although the acetic anhydride does not react with 1a nor 1b, the latter was found to react with $(CF_3CO)_2O$ to give $(CO)_5ReSC(O)CF_3$ (5b) as the only isolated organometallic species.

2. Synthesis of FpC(S)SR via alkylation of FpC(S)SFp

Successive use of Fp^- , CS_2 , and alkylating reagents has been shown to yield the dithiocarboxylate derivative FpC(S)SR (6) [13]. Alkylation of 1a with a suitable alkyl halide (MeI, PhCH₂Br, CH₂CHCH₂Br) or CF₃SO₂OR (R = Me, Et), followed by treatment of the resulting stable cationic dithiocarbene intermediate [FpC(SR)SFp]⁺ (7) [1,3], has now provided an alternative method for obtaining FpC(S)SR (6).

The best way of carrying out the sequence 5 is to isolate 7 in order to avoid competitive S-alkylation of 6, and then treat the crude cationic species with an excess of tetrabutylammonium iodide. Chromatographic separation then gives 6 in yields of 40-70%, together with FpI. This new route implies that FpC(S)SFp is a storable equivalent of $[FpCS_2]^-$ for synthesis of dithiocarboxylate complexes which are known to be precursors for all the mononuclear Fp-containing CS₂ [14] and CS [15] compounds. Thus the Fp moiety can be regarded as a protective group for one of the two sulfur atoms of the unstable $[Fp(CS_2)]^-$ ion. The facile nucleophilic cleavage of the S-Fp bond in cationic dithiocarbenes $[MC(SR)SFp]^+$ regenerates the thionic sulphur. When iodide ion is used as the nucleophile, the FpI product can be reused for synthesizing 1a [16].

It is also noteworthy that even $FpC(S)SRe(CO)_5$ (1b) gives $FpC(S)SCH_3$ under the same conditions [2], but the use of 1b for this purpose is less satisfactory in view of its observed instability of and the lower yield of the synthesis starting from $[Fp(CS_2)]^-$ and $(CO)_5ReBr$ [2].

Experimental

All manipulations were carried out by standard Schlenk techniques under pure dinitrogen. Solvents were dried by standard methods, and degassed and distilled before use. The MeC(O)Cl, $(CF_3CO)_2O$, and alkyl halides were distilled prior to use. The 99% ¹³C enriched carbon disulfide was purchased from Stohler/KOR. All the other reagent-grade chemicals were used as received. The compounds $(\eta - C_5H_5)(CO)_2FeCl$ [17], FpC(S)SFp [2,16]. $FpC(S)SRe(CO)_5$ [2] and $[(\eta - C_5H_5)(CO)FeC(SFp)SC(Fp)S]SO_3CF_3$ [5] were prepared by published procedures; $KSC(O)CH_3$ was prepared from thioacetic acid [18] and KOH in anhydrous Et_2O and dried under vacuum. For recording of spectra the following instruments were used. IR: Perkin–Elmer 257 spectrophotometer, ¹H NMR and ¹³C NMR: JEOL-60, Varian XL 100, MS: JEOL JMS-D (75 eV). Melting points were determined with a Buchi instrument and are uncorrected. Spectroscopic properties, melting points, and yields of the complexes are reported in Table 1.

Reaction of FpC(S)SMLn with ClC(O)Me

The complex FpC(S)SMLn (1) (0.6 mmol) and acetyl chloride (0.2 cm³, 3 mmol) were allowed to react in 50 cm³ of Et₂O at room temperature for 24 h. The precipitate of [Fp(CS)]Cl (0.08 g, 0.3 mmol) was filtered off and characterized by IR spectroscopy (ν (CO) (KBr): 2095, 2065; ν (CS) 1348 cm⁻¹). The filtrate was evaporated under vacuum and the residue chromatographed on an alumina column. Elution with light petroleum/CH₂Cl₂ (4/1) yielded LnMSC(O)Me (3), which was crystallized from CH₂Cl₂/hexane at -20°C. In the case of FpC(S)SFp small amounts of FpCl were recovered from a second fraction from the chromatographic separation.

The reaction of FpC(S)SFp (1a) and an excess of ClC(O)Me in CH_2Cl_2 gave 3a (60%) and FpCl (32%) after chromatography on alumina.

FpSC(O)Me (**3a**): orange yellow. Found: C, 41.90; H, 3.05. C₉H₈O₃FeS (calcd.: C, 42.88; H, 3.20%. MS: $m/e = 252 [M]^+$, 224 $[M - (CO)]^+$, 196 $[M - (CO)_2]^+$.

 $(CO)_5 ReSC(O)Me$ (3b): pale yellow. Found: C, 21.21; H, 1.09. $C_7 H_3 O_6 ReS$ calcd.: C, 20.95; H, = 0.75%.

Preparation of FpSC(O)Me (3a)

To an acetone solution (70 cm³) of FpCl (0.26 g, 1.25 mmol) was added AgNO₃ (0.25 g, 1.50 mmol). After 2 h of stirring the solution was filtered and an excess of KSC(O)Me (1.70 mmol) was added. The mixture was refluxed for 2 h, then filtered and evaporated under vacuum. The residue was dissolved in CHCl₃ and the solution dried over CaCl₂. Evaporation of the solvent left a residue which was recrystallized from CH₂Cl₂/n-hexane at -20 °C to give yellow crystals of FpSC(O)Me (3a) in 63% yield.

Reaction of FpC(S)SMLn with $(CF_3CO)_2O$

A solution of FpC(S)SMLn (0.6 mmol) and trifuoroacetic anhydride in 70 cm³ of Et₂O was stirred for 1 h at room temperature, and the yellow [Fp(CO)]CF₃CO₂ (IR (KBR) ν (CO) 2124, 2071; ν (CF₃CO₂) 1681, 1434, 1197, 1142 cm⁻²) was then filtered off. The filtrate was evaporated under vacuum and the residue extracted with light petroleum (ca. 100 cm³). Concentration of the extract to 20 cm³ followed by crystallization at -20 °C gave FpSC(O)CF₃ (5).

The $[Fp(CO)]CF_3CO_2$ was dissolved in CH_2Cl_2 , and then stirred at room temperature for 24 h, filtered and evaporated to dryness. The residue, which was then dissolved in CH_2Cl_2 /hexane, upon recrystallization gave red crystals of $FpOC(O)CF_3$ [10].

FpSC(O)CF₃ (**5a**): yellow. Found: C, 34.62; H, 1.91. C₉H₅O₃F₃FeS, calcd.: C, 35.32; H, 1.65%. MS: $m/e = 306 [M]^+$, 278 $[M - (CO)]^+$, 250 $[M - (CO)_2]^+$, 140 $[(C_5H_5)FeF]^+$.

 $(CO)_5 ReSC(O)CF_3$ (**5b**): pale yellow. Found: C, 19.26. $C_7O_6 ReS$, calcd.: C, 18.46%. MS: $m/e^{-187}Re = 456 [M]^+$, 428 $[M - (CO)]^+$, 400 $[M - (CO)_2]^+$, 372 $[M - (CO)_3]^+$, 344 $[M - (CO)_4]^+$, 316 $[M - (CO)_5]^+$, 219 $[ReS]^+$.

Preparation of FpC(S)SR(6)

The title complexes were prepared in a two step sequence involving: (i) S-alkylation of 1a, and (ii) treatment of the resulting dithiocarbene complexes [FpC(SR)SFp]⁺ (7) with tetrabutylammonium iodide. The first step was carried out in CH₂Cl₂ (50 cm³) starting from FpC(S)SFp (0.5 mmol) and the stoichiometric amount of CF_3SO_2OEt or a two fold excess of RX (RX = MeI, PhCH₂Br, CH₂CHCH₂Br). In the case of CF₃SO₂OEt only few minutes were required for formation of $[FpC(SEt)SFp]SO_3CF_3$ (7b), but with the alkyl halides MeI or RBr longer reaction times were needed (24 h). In all the cases the 7a-7d complexes were isolated from the reaction mixture by precipitation with Et₂O, and characterized by IR and NMR spectroscopy (Table 1). In the second step a solution of the crude cationic complex [FpC(SR)SFp]⁺ (7) in acetone was treated with tetrabutylammonium iodide (30 mmol) under reflux for 4 h. The solution was then evaporated and the residue chromatographed on an alumina column with light petroleum/ CH_2Cl_2 (3/1) as eluent. The FpC(S)SR complexes obtained from the first fraction were recrystallized from n-pentane at -20 °C; FpCl was recovered from the second fraction (50%).

 $FpC(S)SC_2H_5$ (6b): yellow-orange. Found: C, 42.55; H, 3.62. $C_{10}H_{10}FeO_2S_2$ calcd.: 42.57; H, 3.57%.

 $FpC(S)SCH_2CHCH_2$ (6d) orange-yellow. Found: C, 46.20; H, 3.10. $C_{11}H_{10}FeO_2S_2$ calcd.: C, 44.91; H. 3.43%. ¹H NMR (C₆D₆): 5.79 (ddt, J 17.0, 6.9, 6.7 Hz, =CH, 1H), 5.02 (d, J 17.0 Hz, =CH₂, 1H), 4.88 (d, J 9.8 Hz, =CH₂, 1H), 4.03 (s, C₅H₅, 5H), 3.96 (d, J 6.9 Hz, CH₂, 2H).

Acknowledgments

We thank the CNR and the Ministero della Pubblica Istruzione for financial support.

References

- 1 L. Busetto, A. Palazzi and M. Monari, J. Organomet. Chem., 228 (1982) C19.
- 2 L. Busetto, A. Palazzi and M. Monari, J. Chem. Soc., Dalton Trans., (1982) 1631.
- 3 M. Stolzenberg, W.P. Fehlhammer, M. Monari, V. Zanotti and L. Busetto, J. Organomet. Chem., 272 (1984) 73.
- 4 L. Busetto, M. Monari, A. Palazzi, V.G. Albano, and F. Demartin, J. Chem. Soc., Dalton Trans., (1983) 1849.
- 5 L. Busetto, V. Zanotti, V.G. Albano, D. Braga and M. Monari, J. Chem. Soc., Dalton Trans., (1987) 1133.
- 6 L. Busetto and R.J. Angelici, J. Am. Chem. Soc., 90 (1968) 3283.
- 7 R.J. Angelici and J.W. Dunker, Inorg. Chem., 24 (1985) 2209.
- 8 H. Alper and H.N. Paik, J. Org. Chem., 42 (1977) 3520.
- 9 L. Busetto, V. Zanotti, V.G. Albano, D. Braga and M. Monari, J. Chem. Soc., Dalton Trans., (1986) 1791.
- 10 R.B. King and R.N. Kapoor, J. Organomet. Chem., 15 (1968) 457.
- 11 L. Busetto and A. Palazzi, Inorg. Chim. Acta, 19 (1976) 233.
- 12 L. Busetto, M. Graziani, and U. Belluco, Inorg. Chem., 10 (1971) 78.
- 13 F.B. McCormick and R.J. Angelici, Inorg. Chem., 18 (1979) 1231.
- 14 C. Bianchini, C. Mealli, A. Meli, M. Sabat, Stereochemistry of Organometallic and Inorganic Compounds, Elsevier, Amsterdam, 1986.
- 15 P.V. Broadhurst, Polyhedron, 4 (1985) 1801.
- 16 J.E. Ellis, R.W. Fennel and E.A. Flom, Inorg. Chem., 15 (1976) 2031.
- 17 J.S. Piper, F.A. Cotton and G. Wilkinson, J. Inorg. Nucl. Chem., 1 (1915) 165.
- 18 B. Sjoberg, Svensk. Kem. Tid., 63 (1951) 90.